areabDetector

What’s New and What’s Next

Mark Rivers

-

-

Outline

» |_ast update was October 2017 at ITER and
ICALEPCS in Barcelona

— areaDetector and ADCore Releases since then: R3-2, R3-3
(soon)

* Brief recap of the top items from R3-0 for those who
missed it

» Major new features in 3-2 and 3-3
» Roadmap for R4-0 and R5-0

EPICS NTNDA Viewer Imaged plugin

(ADViewers R1-0)

* New ImageJ plugin written by Tim Madden and Marty Kraimer

« Essentially identical to EPICS_AD_ Viewer.java except that it
displays NTNDArrays from the NDPluginPva plugin, i.e. using
pvAccess to transport the images rather than
NDPIluginStdArrays which uses Channel Access.

| £ Image J EPICS_NTMDA_Viewer Plugin — O ;4

channelName N NY NZ Frames/s Capture to Stack

AZSINTPaTimage " | Disconnect Stop 1024 1024 1 455 L] Snap

Status; 10-Jun-2018 13:22:25.337: Received 81 images in 2.00 sec

EPICS_NTNDA Viewer Advantages

NTNDATrray data transmitted "atomically" over the network

With Channel Access size and data type of waveform record is
fixed at ioclnit, cannot be changed at runtime.

— To view both 8-bit and 64-bit double FFT images waveform record
needs to be 64-bit double, 8X network overhead for 8-bit. pvAccess
changes the data type of the NTNDArrays dynamically at run-time.

Channel Access requires setting
EPICS CA MAX_ ARRAY_BYTES, considerable confusion

and frustration for users.
NDPIluginPva is 5X-10X faster than NDPIluginStdArrays

ImageJ is 1.5-2X faster with pvAccess than with Channel
Access.

NDArrayPool Design Enhancements (R3-3)

 Previously each plugin used its own NDArrayPool.

« Problem: not really possible to enforce the maxMemory limits for
the driver and plugin chain.

« Sum of the memory use by the driver and all plugins that matters,
not the use by each individual driver and plugin.
« NDPIluginDriver base class changed to set its
PNDArrayPool pointer to the address passed to it in the
NDArray.pNDArrayPool for the NDArray in the callback.

« Ultimately all NDArrays are derived from the driver, either
directly, or via the NDArrayPool.copy() or
NDArrayPool.convert() methods.

« Thus plugins now allocate NDArrays from the driver's
NDArrayPool, not their own.

Active Plugin Counting and
Waiting for Plugins to Complete (R3-3)

» Previously to wait for plugins to complete before the driver indicated
that acquisition was complete then needed to set CallbacksBlock=Yes

for each plugin in the chain.
» Waiting for plugins is needed in cases like the following
» Doing a step scan and one of the counters for the step-scan is a PV from the
statistics plugin.
* Necessary to wait for the statistics plugin to complete to be sure the
PV value is for current NDArray and not the previous one.
» Doing a scan and writing the NDArrays to a file with one of the file
plugins. N
* Necessary to wait for the file plugin to complete before changing the
file name for the next point.
» Problems with setting CallbacksBlock=Yes.
« Slows down the driver because the plugin is executing in the driver thread
and not in its own thread.
« Complicated to change all of the required plugin settings from
CallbacksBlock=No to CallbacksBlock=Yes.

Active Plugin Counting and
Waiting for Plugins to Complete

* NDPIluginDriver base class now does the following:
* Increments a NumActivePlugins counter in the driver that owns

each NDAurray as it is queued
« Decrements the counter after the processing is done.

 All drivers have 3 new records:
« NumActivePlugins: Indicates the total number of NDArrays that
are currently processing or are queued for processing by this driver.
« WaitForPlugins: Determines whether AcquireBusy walits for
NumActivePlugins to go to 0 before changing to 0 when acquisition

completes.
« AcquireBusy: “busy” record that is set to 1 when Acquire changes

to 1. It changes back to 0 when acquisition completes, i.e. when
Acquire_ RBV=0.
» If WaitForPlugins is Yes then it also waits for
NumActivePlugins to go to 0 before changing to 0.

 Should now rarely be necessary to change plugins to use
CallbacksBlock=Yes.

" simDetector.adl@corvette - O X

Simulation Detector — 135IM1:caml:
T

Clogs Closed
i |
p.oo0-

Collect

<+— New records

Attributes

Gttributes file OK

NDFileTIFF (R3-3)

« Added support for readFile() so it is now possible to read a
TIFF file into an NDArray using this plugin and do

callbacks to downstream plugins.
« All datatypes (NDDataType t) are supported.
e Supports Mono, RGB1, and RGB3 color modes. It also correctly
reads files written with RGB2 color mode.
« Sestores the NDArray fields uniquelD, timeStamp, and epicsTS if
they are present.
» Restores all of the NDArray NDAttributes that were written to the

TIFF file.
« Because of the way the NDAttributes are stored in the TIFF file the
restored attributes are all of type NDAttrString, rather than the
numeric data types the attributes may have originally used.

« One motivation is for NDPluginProcess to be able to read
TIFF files for the background and flat field images, rather
than needing to collect them each time it is used.

NDPIluginProcess (R3-3)

« Load a dedicated TIFF plugin for the NDPIluginProcess

plugin in commonPlugins.cmd.
« Used for reading background or flatfield TIFF files.

e Add an sseq record to load the background image from a

TIFF file. Executes all the following steps:

1. Saves the current NDArrayPort fo the Process plugin to a
temporary location

2. Sets the NDArrayPort to the TIFF plugin.

3. Enables ArrayCallbacks for the TIFF plugin in case they were
disabled.

4. Process the ReadFile record in the TIFF plugin. This reads the
TIFF file and does callback to the Process plugin.

5. Loads the NDArray from the callback into the background image.

6. Restores the previous NDArrayPort from the temporary location.

« Add an sseq record to load the flatfile from a TIFF file.

« Executes the same steps as for the background above, except that in
step 5 it loads the NDArray into the flatfile image.

W FDP LS B cartie -

NDPluginProcess (R3-3)

New records

b

_Flat field normalization

-
..
.

NDFileHDF5 (R3-2)

« Added support for blosc compression library.

« Compressors include blosclz, 1z4, Iz4hc, snappy, zlib, and zstd.
« Also support for ByteSuffle and BitShuffle.

« ADSupport now contains the blosc library, so it is available for
most architectures.

e The build flags WITH_BLOSC, BLOSC EXTERNAL, and
BLOSC_LIB have been added, similar to other optional libraries.
Thanks to Xiaogiang Wang for this addition.

« Changed all output records in NDFileHDF.template to have
PINI=YES. This is how other plugins all work.

Operator displays

medm, edm, caQtDM, CSS-BOY (R3-2)

« Added ADApp/op/Makefile.
* Runs the conversion tools to convert the medm adl files to edl for edm, ui for
caQtDM, and opi for CSS-BOY.

« Lightning talk on this later today.

_medm __ CSS-BOY.

Other Changes (R3-3)

* NDArrayPool Enhancements
« Changes to allow inheriting it from derived classes. Thanks to
Sinesa Veseli for this.
« Optimization to memory allocation mechanism. Original work by
Michael Huth. I am currently modifying to use std::multiset, same
as used for plugin output sorting.

« ntndArrayConverter.cpp
« Added conversion of the NDArray.timeStamp and
NDArray.epicsTS fields from EPICS epoch (Jan. 1 1990) to Posix
epoch (Jan. 1, 1970).
* Needed because NDArrays use EPICS epoch but pvAccess uses
Posix epoch and the timestamps shown by pvGet were incorrect for
the NTNDAurrays.

Point Grey 10-Gbit Ethernet Camera
Oryx ORX-10G-51S5C-C
« 2448 x 2048 global shutter CMQOS
Sony IMX250 2/3”
Dynamic range of 72 dB
Peak QE of 62%
Read noise of 2.2e-
12-bit, 10-bit, or 8-bit data

Max frame rate of 162 fps
— 779 MB/S, >8X faster than GigE

$1,875

Resolution Speed Speed (MB/s)
(frames/s)

ORX-10G-123S6M-C 4096x3000 $3.950 68 frames/s 797 MB/s
ORX-10G-123S6M-C 4096 x 2160 $3.650 93 frames/s 785 MB/s
ORX-10G-51S5M-C 2448x2048 $1.875 163 frames/s 779 MB/s

ADSpinnaker

New driver for Point Grey GeniCAM cameras using their
Spinnaker SDK (10 GigE, GigE, USB-3)

* Currently working on Windows

» Linux requires Ubuntu 16 (gcc 5.4, special release of ffmpeg)

Some work beginning on aravisGIgE driver
* Guabao Shen at APS and Neil O’Brien at Diamond)

i.c&.—-m . o *]

Roadmap: ADCore R4-0 ?7?

Put more functionality into ADDriver base class

— Derived class would call
ADDriver::doPluginCallbacks(), which would handle
setting attributes, getting timestamp, calling plugins,
etc.

Simplify file saving modes (no more Single,
Capture, Stream) and eliminate AutoSave

Add flag to prevent overwriting files
Support compression in NDArrays

Roadmap: ADCore R5-0 ?7?

Change NDArray to NTNDArray for passing data to
plugins
Use PVDatabase

— “local” provider within IOC
— “pva” provider between I0Cs

Smart pointers automatically eliminate all unnecessary
copying

Eliminates need for NDPIluginPva

V4 clients can immediately receive data from any point in
plugin chain

Distribute load to multiple IOCs without pvaDriver

Bruno Martins has demonstrated this working for
ADSimDetector and NDPluginStats

